Solution of vector partial differential equations by transfer function models

نویسندگان

  • Rudolf Rabenstein
  • Lutz Trautmann
چکیده

Transfer function models for the description of physical systems have recently been introduced to the field of multidimensional digital signal processing. They provide an alternative to the conventional representation by partial differential equations (PDE) and are suitable for computer implementation. This paper extends the transfer function approach to vector PDEs. They arise from the physical analysis of multidimensional systems in terms of potential and flux quantities. Expressing the resulting coupled PDEs in vector form facilitates the direct formulation of boundary and interface conditions in their physical context. It is shown how a carefully constructed transformation for the space variable leads to transfer function models for vector PDEs. They are the starting point for the derivation of discrete models by standard methods for one-dimensional systems. The presented functional transformation approach is suitable for a number of technical applications, like electromagnetics, optics, acoustics and heat and mass transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

The Sturm-liouville-transformation for the Solution of Vector Partial Differential Equations

Partial differential equations (PDEs) are the conventional tool for the description of timeand space-dependent physical phenomena. Vector PDEs arise from the physical analysis of multidimensional (MD) systems in terms of potential and flux quantities. Expressing the resulting coupled PDEs in vector form facilitates the direct formulation of boundary and interface conditions in their physical co...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999